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Electrical Resistance Tomography (ERT) is a non-invasive technique that can be used to monitor 

settling slurry pipe flow. Two aspects of the imaging were investigated. Of initial interest was the 

selection of an appropriate image reconstruction algorithm. Using the EIDORS open-source tool set, 

various image reconstruction algorithms were evaluated and results indicate the best performing was 

a combination of the Laplace and GREIT algorithms. Next, a novel functional measure was 
developed, using auto-correlations of image pixel waveforms, to detect the interface of the settled 

bed. The results of this analysis appear to show a zone of instability corresponding to the 

bed/supernatant interface at different flow rates, suggesting a promising way of extracting additional 

useful information from the ERT measurements. 
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1. INTRODUCTION

Electrical Resistance Tomography (ERT), is a relatively low-cost method to determine 

the dynamic state of the internal distribution of the contents of pipes in a non -destructive 

and non-intrusive manner (Pinheiro et al., 1998). The use of ERT in laboratory scale pipe 

flow are reported in Dickin and Wang (1996), Grootveld et al. (1998), Vauhkonen et al. 

(1999), Tapp et al. (2003), Hartov et al. (2005) and Queiroz (2012). These authors all 

concluded that ERT is a promising technique to visualise slurry flow in a pipe. Giguère et 

al. (2008) conducted a successful study to identify homogeneous and heterogeneous slurry 

flow regimes, using image reconstructions and direct interpretation of ERT measurements. 

In ERT, images are reconstructed to show the electrical conductivity (hence 

distribution) of material within the pipe, based on voltages meas ured at the internal surface 

of the pipe in response to an injected electrical current. It is a two-step process, requiring  

solution of the forward problem, followed by solution of the non-linear, ill-posed inverse 

problem (Adler and Boyle (2017)). The images are created via specific, selected 

reconstruction algorithms, the choice of which will significantly influence the quality and 

accuracy of the resulting images. Information on the effectiveness and accuracy of various 

image reconstruction algorithms is  needed because ERT is susceptible to electrical noise 

and has relatively low spatial resolution, in addition to the ill-posedness of the inverse 

problem (Barber (2005), Zhang et al. (2011)). These limitations make it difficult to exploit  
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ERT images quantitatively. A systematic validation of ERT images of slurry flow is still 

necessary. Using the EIDORS software (Adler and Lionheart (2006)) Kotze et al. (2019) 

investigated the accuracy and suitability of different ERT reconstruction algorithms for 

settling slurry flow. Based on measurements made with a single concentration model 

slurry, for a limited number of flow rates and reconstruction parameters, they concluded 

that the Laplace or Laplace + GREIT algorithms gave the most accurate, consistent results. 

To see if further useful information on coarse particle settling slurry flow can be 

extracted from the ERT data, the measurements for the flow tests described in Kotze et al. 

(2019) were re-analysed. The Laplace reconstruction algorithm was used to create time 

sequenced images for each flow condition, from which pixel value time series were 

extracted. These were used in time delayed auto-correlation calculations to identify areas 

of unsteadiness in the pipe cross -section for each flow condition. 

2. EXPERIMENTAL APPARATUS AND MATERIALS 

2.1 FLOW LOOP, ERT SPOOL PIECE AND ERT INSTRUMENT  

The pipe loop used for the tests consisted of a 42.6 mm PVC pipe, a Warman 2/1.5 

inch rubber lined centrifugal pump controlled by a Yaskawa J1000 variable speed drive 

(VSD), a 160 l conical base mixing tank and a Krohne Optiflux 4000 electromagnetic flow 

meter (bulk flow rate). The ERT spool piece was made from non-conductive rigid  

polyvinyl chloride (PVC). It had two sets of electrode rings 5 cm apart, each with 16 

stainless steel electrodes spaced equally around the inside circumference of the pipe (only 

one electrode ring used in this work). Observed flow rate was used to refer to identify 

(name) the different tests.  

ERT measurements were made using 1 plane of the 8 measurement plane UCT ERT 

system (maximum of 1000 frames/sec). The hardware injects current across a pair of 

electrodes and measures the voltages on the other electrodes using the adjacent 

measurement strategy, to give 104 independent voltage measurements (effectively a spatial 

resolution of about 10% of pipe diameter). The instrument communicates with a PC for 

setup, to load and save the measured data and to display tomograms in real-time, using 

software developed at UCT. See Randall et al. (2005) and Wilkinson et al. (2006) for more 

details on the system. 

3. EXPERIMENTS 

The test slurry (mixture) comprised nominally 3 mm black acetal beads, density 1.41 

g/cm³ (with some white beads to provide a visual aid) in a tap water/salt solution, which 

allowed easy creation of different flow regimes (e.g. stationary or sliding bed; 

heterogeneous or homogeneous flow). The actual concentration of beads was arbitrary and 

not determined for this work. Mixture temperature was ~23 ±1 °C. ERT data were acquired 

for 120 s for each test, at a frame rate of 566 Hz, and the average of every 25 frames was 

stored, resulting in approximately 2800 frames per measurement set . To compare bed 

depths estimated from the reconstructed images , photographs were taken. 

Flow tests at four arbitrary bulk flow rates, namely 0.86 l/s, 1.30 l/s, 2.82 l/s and 4.50 

l/s, referred to respectively as A, B, C & D, were done. Visual observations indicated that 
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at flow rate A there was a slowly sliding packed bed at the pipe invert with few beads 

suspended above it; at B a larger, less densely packed and faster sliding bed in the lower 

half of the pipe; at C a significant number of suspended beads with a visibly sheared 

(apparent concentration and velocity profiles through bed depth) sliding bed towards the 

pipe invert and at D largely heterogeneous flow (greater concentration of beads towards 

pipe invert, but no bed).  See photographs in Figure 1.  

4. ANALYSES AND RESULTS 

4.1 IMAGE RECONSTRUCTIONS 

Kotze et al. (2019) evaluated six selected ERT algorithms, namely Laplace, HPF,  

NOSER, Greit, TV-PDIPM and a combination of Laplace-GREIT, in the reconstruction of 

static objects and stationary and moving settled beds. For the moving beds (in terms of 

defined accuracy parameters) the Laplace algorithm performed best and was used to 

reconstruct the images used in the temporal analyses described in §4.2 (see Figure 1). 

 

 
Figure 1.  Bed levels (heights) and image reconstructions for the flow rates A (0.86 l/s) B (1.30 l/s) 

C (2.82 l/s) and D (4.50 l/s) [Kotze et al. (2019)] 

4.2 TEMPORAL ANALYSIS OF FLOW TEST ERT MEAS UREMENTS 

When a slurry is flowing there can be a less precise interface between the settled bed 

and the fluid above it than when the slurry is static. Under steady flow conditions (as was 

the case for flows A to D) it seems reasonable to expect that the structure of the fluid/fluid-

solids mixture in the “upper” part of the pipe and the “lower” part of the bed remain  
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reasonably consistent over time, and that they are separated by a transition region in which 

it may vary rapidly in size and concentration with time. With increasing flow rate this 

transition region is likely to become more unsteady and expand further across the pipe 

cross-section as the mixture becomes more heterogeneous. It can be expected that temporal 

correlation will be lower in the more unsteady regions, where the image pattern is likely to 

be more variable over time. 

To investigate the validity of this assertion, for each of the flow conditions A to D, 

auto-correlations of time shifted image pixel waveforms  extracted from a sequence of 

reconstructed images were calculated (block diagram in Figure 2). The expectation was 

that time delays over which the auto-correlation values are non-zero would give an 

indication of flow stability. The calculations were done as follows: 

 for each measurement (frame of data) within a set an image was reconstructed using the 

Laplace algorithm, and stored in time sequence (approximately 40 ms  apart) 

 from these images a time series of pixel values was extracted for each pixel 

 for each pixel time series, cross-correlations were calculated at 40 ms offsets from 0 to 

120 s (correlation values are a maximum of 1 at time zero and decreases with increasing 

time delay) 

 A value of 1 s was chosen as a threshold by which time any differences in the image 

(pixel values) would be apparent, and then for each pixel the maximum correlation value 

for delays > 1 s was found. This maximum value (always < 1) was set as the pixel value 

for a plot of correlation values across the pipe cross -section. Different threshold values 

were calculated and all resulted in similar images. 

 

Selected results from analyses as described above for the four flow rates A (0.86 l/s), 

B (1.30 l/s), C (2.82 l/s) and D (4.50 l/s) are shown in Figure 3. The mA and frequency 

values in Figure 3 refer to the injection current level and VSD setting respectively. 

 

 
Figure 2.  Block Diagram of showing the functional images of the time-series correlations. (i) raw 
image sequence, (ii) waveform of an individual pixel over time, (iii) auto-correlation of waveform 

(ii) and (iv) functional image of the normalized auto-correlation value at 1.0 s 

 

The left column in Figure 3 shows the average ERT image, normalized to the maximu m 

image (the image for the lowest flow rate). The centre column shows auto -correlations of 

time shifted pixel value waveforms at the indicated vertical positions (corresponding 

colours) on the average image centerline. The right column shows plots of pixel maximu m 

auto-correlation values for time delays > 1 s. Darker parts of these plots show areas of 

lower temporal correlation. Note that in order not to mask any features in the data that the 

analyses might expose, the correlation plots for the different flow rates are to different  

scales. 
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Figure 3.  Average ERT images, selected cross-correlation plots and temporal correlation plots 

across pipe for bulk flow rates of A (0.86 l/s), B (1.30 l/s), C (2.82 l/s) and D (4.50 l/s)) – 3 mm 

acetal beads in water 

5. DISCUSSION 

ERT is a promising technique for dynamic monitoring of solids in settling slurry pipe 

flow, but requires information on the accuracy and effectiveness of the image 

reconstruction techniques/algorithms used. This issue was addressed in Kotze et al. (2019), 

using a single concentration settling slurry (mixture) and a limited number of flow rates 

and image reconstruction parameters. The actual level of solids (bed height) in the images  

varies significantly with flow rate, since the conductivities of the settled bed and the 

supernatant become more similar with increasing flow rate, and ERT images of flowing  

settling slurries do not necessarily tell the whole story. For the flow conditions analysed, 

Kotze et al. (2019) introduced a parameter Max% (ratio of Max pixel in current image/Max 

pixel over all images for flows A to D) which is largely independent of the reconstruction 

algorithm. Max% is not a measure of the accuracy of the ERT image, but rather an 

indication of the relative difference in contrast between the highest and lowest density 

zones within the pipe. It decreased dramatically at the highest flow rate, in line with the 
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visual observation that the settled bed had disappeared. As Max% decreases the ERT image 

can be interpreted as representing a more heterogeneous to homogeneous flow of the 

mixture. However, as can be seen in Figure 1 the images from any given reconstruction 

algorithm for the different flow regimes look quite similar and an unsteady transition 

region is not obvious. 

In an attempt to extract information on the transition zone, the dynamic components of 

the ERT images from the different flow rates were evaluated as described in §4.2. The left  

column of Figure 3 shows the average ERT images, normalised to the image at the lowest 

flow rate (maximum image). The images clearly indicate a diminishing bed with increasing 

flowrate. The first two images (for the flow rates 0.86 and 1.30 l/s) show the observed 

sliding bed, but suggest a distinct gradient in concentration across the height of the bed, 

which was not physically apparent. The ERT image for 2.82 l/s shows a definite region of 

increased concentration in the pipe invert, but suggests a much lower concentration and 

height than observed visually. The image at the highest flow rate of 4.50 l/s appears to be 

almost uniform, implying a highly heterogeneous to homogeneous distribution of the 

solids. The plots in the centre column of Figure 3 are of calculated auto-correlation values 

corresponding to the pixel positions (same colour coding) on the vertical centerline of the 

ERT images, shown for delays -4 to 4 s. Auto-correlation values are all a maximum at time 

delay zero, and drop off from there at varying rates, depending on position and flow 

regime. These plots clearly show greater correlation (less variance in image with time) 

towards the top and the invert of the pipe. The maximum values at every pixel position 

from auto-correlation calculations for delays > 1 s are shown in the images in the right 

column of Figure 3. These images have not been individually normalised so that any real 

features in each dataset can be “seen” in what would otherwise be almost uniform images  

(the high flow rate, heterogeneous images). 

Looking at the auto-correlation values and their plots for the 0.86 and 1.30 l/s flow 

rates, no unsteady transition region is apparent, in agreement with the visual observations, 

but in contrast to what the ERT images might suggest. Temporal cross -correlation values 

over the whole pipe cross-section are high, showing that the flow is stable. The small 

regions of lower (but still high) correlation at approximately the 10 and 2 o'clock positions 

in the images for these flow rates are real features in the data, but the reason for their 

existence is not understood now. The image for flow at 2.82 l/s is uniform across the pipe 

cross-section except for a relatively small “horizontal” band of “unsteady” flow which has 

lower correlation values. This is in agreement with visual observations, in which a narrow 

(transition) band with a large number of particles was seen to be travelling faster than the 

settled particles below them, in which the particles are neither settled or fully suspended. 

The image is similar at 4.50 l/s, but the band showing much lower temporal correlation is 

broader and lower in the pipe. This could not be confirmed visually as there was no bed as 

such and the particles were travelling too fast to see. It is, however, physically plausible 

since as the flow rate increases more particles will be suspended, leaving fewer settled 

(smaller bed height) and the mixing region (particles swapping between “bed” and 

supernatant) will increase as the flow becomes more heterogeneous. 

Although more research is necessary over a broader range of particle sizes, densities, 

flow rates and carrier fluids  to understand what these “functional” images show, the 
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temporal correlation analyses of ERT image pixel waveforms appears to be a useful way 

to get more information from the time-series of ERT data.   

6. CONCLUSION 

The aim of this work was to see if reconstructed ERT images, in addition to 

representing the distribution of coarse solid particles in settling slurry pipe flows, also 

contain useful information on the thickness and location of the bed/supernatant transition 

zone. The assertion was that in the regions of the pipe outside the unsteady (mixing) 

transition zone the structures of the suspension are steady. The parts of the ERT images 

corresponding to these regions will vary little with time and therefore have high temporal 

corrrelation compared to the transition region. The Laplace algorithm was used to 

reconstruct ERT images  from 120 s of measurements made with 3 mm acetal beads in 

water in a 42.6 mm PVC pipe under different flow conditions. The images are about 40 

ms apart, representing a frame rate of approximately 23 fr/s. Temporal correlation analyses 

of pixel value time series for each measurement set showed areas of steady and unsteady 

flow which largely agreed with visual observations and were physically plausible. 

Although considerably more research is needed to fully prove the validity of this type of 

analysis and to understand features of the data it reveals, initial results given here show it 

may be a useful way to extract additional information from ERT data. 
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